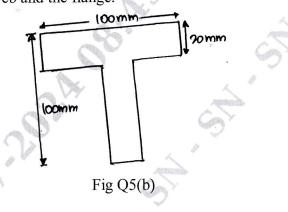


1 of 3

(10 Marks)

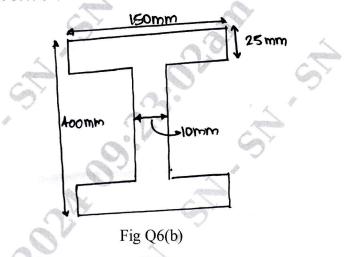
Module-3


5 a. List the assumption made in Bending theory.

Explain theory of simple bending.

6

a


b. The shear force acting on a section of a beam is 50kN. The section of the beam is a T-shaped of dimensions $100 \text{mm} \times 100 \text{mm} \times 20 \text{mm}$ as shown in Fig Q5(b). The moment of inertia about the horizontal neutral axis is $314.221 \times 10^4 \text{mm}^4$. Calculate the shear at the neutral axis and at the junction of the web and the flange.

(10 Marks)

OR

- (06 Marks)
- b. An I section beam of $150 \text{mm} \times 400 \text{mm}$ has a web thickness of 10 mm and a flange thickness of 25 mm of the shear force acting on the section in 40 kN. Sketch the shear stress distribution across the section.

(14 Marks)

(04 Marks)

(06 Marks)

Module-4

- 7 a. List the assumption made in Euler's theory of column.
 - b. Define what is short column and a long column.
 - c. A solid round bar 3m long and 5cm in diameter is used as a struct with both ends hinged. Determine the crippling load. Take $E = 2 \times 10^5 \text{N/mm}^2$. Also find the crippling load when both side are fixed. (10 Marks)

OR

- 8 a. Write expression for crippling load
 - i) One end fixed other end hinged
 - ii) Both ends fixed
 - iii) One end fixed and other pin jointed
 - iv) Both ends hinged.

(04 Marks)

18ENG25

(04 Marks)

- Define : i) Crushing load ii) Crippling load. b.
- A hollow alloy tube 4m long with external and internal diameter of 40mm and 25mm C. respectively was found to extend 4.8mm under a tensile load of 60kN. Find the buckling load for the tube with both ends pinned. Also find the safe load on the tube, taking a factor (12 Marks) of safety of 5.

Module-5

- List the assumption made in deriving equations for moment curvature relationship. (04 Marks) 9 a Define i) Deflection ii) Slope iii) Deflection curve. (06 Marks) b.
 - A rectangular beam 300mm deep is simply supported over a span of 4m. Determine the C. UDL which the beam may carry if the bending stress shall not exceed 120N/mm². Take I = $8 \times 10^6 \text{mm}^4$. (10 Marks)

OR

A beam of uniform rectangular section 200mm wide and 300mm deep is simply supported at 10 a. its ends. If carries a uniformly distributed load of 9kN/m run over the entire span of 5m. If the value of E is 1×10^4 N/mm², find : i) the slope at the support ii) max deflection.

(12 Marks)

A beam 4m long, simply supported at its ends, carries a point load W at its centre. If the b. slope at the ends of the beam is not to exceed 1°, find the deflection at the centre of the (08 Marks) beam.

